Two Crystal Forms and the Fluorescence Spectra of 9, 10-Dichloroanthracene

By Harumitsu Kuwano and Michio Kondo

Central Research Laboratories, Sankyo Co., Ltd., Shinagawa-ku, Tokyo

(Received May 2, 1966)

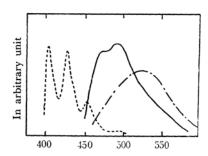
It has been pointed out by Stevens¹⁾ that the fluorescence spectra of aromatic hydrocarbons in the solid state have a close relationship to their crystal structures. According to him, aromatic hydrocarbons of type A show slightly red-shifted emission spectra, preserving molecular vibrational structures, whereas crystals of type B exhibit broad, structureless emission bands at considerably longer wavelengths than the corresponding molecular fluorescence in solutions.

Bock et al.²⁾ reported the fluorescence spectrum of 9, 10-dichloroanthracene (DClA) at various temperatures. They reported that, at room temperature, the spectrum exhibits a broad band with something of a structure and with peaks at about 470 and 490 mu. On the other hand, Stevens and Dickinson³⁾ reported a single greenfluorescence band, with a peak about 540 mu, for sublimed DClA. This fact has stimulated us to verify the existence of the two crystal forms of DClA.

Results and Discussion

Materials.-DClA was purified by column chromatography through alumina and recrystallized from benzene. Crystal-form α was obtained as long, yellow plates from benzene, alcohol or carbon tetrachloride. Form β was obtained as greenish-yellow plates on sublimation or by heating the α -form crystal above 180°C.

Lattice Constants and Crystal Structures.-The lattice constants of the α and β forms of DCIA were determined by the usual X-ray technique. The crystal data for the α and β forms are summarized in Table I, together with the values reported by Trotter.49


The lattice constants of the α form agree excellently with those reported by Trotter. This leads to the conclusion that the α form is identical with that analyzed by Trotter.53 According to his result, molecules are stacked along the a-axis, with their molecular planes nearly perpendicular

to the a-axis. Adjacent molecules in the stacked column are separated by about 3.5 Å. In the projection along the a-axis, the long axes of two adjacent molecules are seen to be at an angle of about 60° to each other.

A crystal structure analysis of the β form is now in progress. Preliminary results reveal that the molecular stacking along the a-axis resembles the 9, 10-dibromoanthracene crystal, the structure of which has been analyzed by Trotter.69 Namely, as can be seen from the value of the a-axis, the molecular planes are nearly parallel to the bc plane and the molecules in a stacking column are completely superposable on the bc plane when they are projected along the a-axis. In this regard, the β form is in sharp contrast to the α form, although both α and β forms belong to the type B.

Fluorescence Spectra. — The fluorescence spectra were recorded with a Shimadzu model SV-50 AL spectrophotometer equipped with an accessory for measuring the emission spectra of solid samples.

The fluorescence spectra measured on polycrystalline powders of the α and β forms of DCIA at room temperature are shown in Fig. 1, together with that measured in a cyclohexane solution.

 $m\mu$ Fig. 1. Fluorescence spectrum of 9, 10-dichloroanthracene.

---: in cyclohexane —: α form ---: β form

Emission bands in the crystalline state are at longer wavelengths than that in the solution. The α form exhibits a broad spectrum with peaks at about 470 and 490 m μ , whereas the β form shows a broad structureless band, with a peak at about

¹⁾ B. Stevens, Spectrochim. Acta, 18, 439 (1962).
2) E. Bock, J. Ferguson and W. G. Schneider, Can. J. Chem., 36, 507 (1958).
3) B. Stevens and T. Dickinson, Spectrochim. Acta,

¹⁹, 1865 (1963).

⁴⁾ J. Trotter, Acta Cryst., 11, 564 (1958).
5) J. Trotter, ibid., 12, 54 (1959).

⁶⁾ J. Trotter, ibid., 11, 803 (1958).

Table I. Crystal data of two crystal forms of 9, 10-dichloroanthracene

	α Form		β Form
	Present work	Trotter	
a	7.04 Å	7.04 Å	3.87 Å
b	17.95 Å	17.93 Å	$8.58\mathrm{\AA}$
c	8.60 Å	8.63 Å	16.98 Å
α	90°	90°	106°31′
β	103°06′	102°56′	94°56′
r	90°	90°	95°04′
Space group	$P2_1/a$	$P2_1/a$	$P\overline{1}$ or $P1$
V	1059 ų	1062.3 Å ³	535 ų
\boldsymbol{Z}	4	4	2
$d_{\mathtt{calcd}}$.	$1.549 \mathrm{g. cm^{-3}}$	1.545* g. cm ⁻³	1.535 g. cm ⁻⁸
$d_{\mathtt{obsd}}$.	1.549 g. cm ⁻³	$1.525 \mathrm{g. cm^{-3}}$	1.532 g. cm ⁻³

^{*} A value recalculated from their lattice constants.

 $525 \, \mathrm{m} \mu.*$ The spectrum reported by Bock et al. resembles the present one on the α form, but the emission band reported by Stevens and Dickinson is located at a slightly longer wavelength than that of the β form reported herein.

As has been mentioned, the α and β forms of DClA both belong to the type B. These closelystacked structures with interplanar distances of about 3.5 Å seem to be favorable for the formation of excimers. The broad structureless emission of the β form is separated from the 0-0 band of the emission spectrum in a cyclohexane solution by about 5800 cm⁻¹. For aromatic hydrocarbons in solutions, it has been pointed out that the excimer fluorescence spectra are located at positions lower than the 0-0 bands of monomer emissions by about 6000 cm⁻¹.⁷) Furthermore, pyrene, a typical crystal with a dimer structure, shows a structureless emission band quite similar to the excimer fluorescence observed in solutions of moderately-high concentrations (10⁻² mol./l.) as regards its shape and its position.13 Therefore,

the fluorescence spectrum of the β form can be regarded as being due to the excimer state.

On the other hand, it is not easy to explain the structure of the emission band of the α form. This band has a frequency lower than that of the 0-0 band of the monomer emission by about 3600 cm⁻¹. This band may be explained by; (a)"a weak excimer state" or (b) "a unimolecular degradation of an excited state strongly perturbed in crystals." Recently, it has been reported8) that anthracene in cyclohexane at a low temperature (20°K) shows an excimer fluorescence with some structure located at a position lower than the 0-0 band of monomer emission by only about 2000 cm⁻¹. This fact seems to suggest the superiority of the explanation (a) over (b), but the possibility of (b) cannot be ruled out. Therefore, a more satisfactory explanation should be obtained from studies of the temperature dependence of the fluorescence spectra of the α and β forms of DClA.

Many theortical papers⁹⁾ have appeared on the excimer configuration, but no definite conclusion has yet been obtained. The present results will at least throw some light on this problem.

^{*} The excitation spectra of the α and β forms were only a little different. This means that the absorption spectra of the α and β forms are essentially indentical.

7) J. B. Birks, M. D. Lumb and I. H. Munro, *Proc. Roy. Soc.*, **A280**, 289 (1964).

⁸⁾ J. Ferguson, J. Chem. Phys., 43, 306 (1965). 9) T. Azumi and S. P. McGlynn, ibid., 42, 1675 (1965), and references cited therein.